
Stylesheet Transformations for Interactive Visualization: 
Towards a Web3D Chemistry Curricula 

 Nicholas F. Polys 
Department of Computer Science 
Virginia Polytechnic Institute and 
State University (Virginia Tech) 

US 540.961.2951  

npolys@vt.edu 

 
 
 

ABSTRACT 
Recent Standards specifications offer important but 
underemployed techniques to maximize access-to and 
distribution-of information for real-time 3D visualization over 
the web.  This paper describes and evaluates such techniques to 
transform structured data such as Chemical Markup Language 
(CML) to different forms and contexts for Web3D delivery using 
Extensible Stylesheet Transformations (XSLT), Extensible 3D 
(X3D), and VRML97.  Standards design approaches offer a 
number of advantages: data durability, data interoperability, and 
an ecology of tools to be deployed for production and delivery.  
As we demonstrate, these techniques allow developers to port 
data between multiple representations and formats, to leverage 
the separation of the presentation (reference) from the content 
(referent), and the ability to define ‘high-level’ markup tags for 
application-specific needs.  By defining a set of XSL 
Transformations, we are able to generate multiple views and 
interaction schemes with the same data set; each one 
‘personalized’ for different applications and different levels of 
expertise. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: X3D, VRML, XML, XSLT, 
DOM, CML, Java 

General Terms 
Standardization, Languages, Design,  

Keywords 
Information Visualization, Interactive 3D Graphics, Molecular 
Chemistry, Education 

1. INTRODUCTION 
International standards organizations serve the computing 
community by developing and specifying open platforms for 
digital data exchange- they provide the evolving nexus for 
Integration and Interoperability.  By building to industry 
standards, organizations can lower their costs for software and 
data integration, maximize their data re-use and all the while 
guarantee author reliability and user access beyond market and 
political vagaries.  Such internationally recognized standards are 

manifested as widely deployed web technologies such as HTML, 
SGML, and the XML family produced by the World Wide Web 
Consortium (W3C) [18] and Virtual Reality Modeling Language 
(VRML) and Extensible 3D (X3D) produced by the Web3D 
Consortium (Web3DC) [14].   
This paper examines important but underemployed techniques 
for 3 or 4-dimensional visualization of XML data with X3D and 
VRML.  Through diligent and cooperative work, the X3D Task 
Group and the W3C have converged on an XML encoding for 
interactive 3D scenegraphs – X3D.   X3D is a componentized 
and improved successor to VRML97 for describing and 
programming Web3D virtual environments.   By using the XML 
encoding of X3D, developers can leverage the entire XML family 
of technologies and get a suite of tools for data portability as 
XML is founded on the distinction between content and 
presentation [7, 9, 15].  We believe that the full impact of the 
convergence between Web3D and XML is not yet fully 
understood, and intend this project to show the power of open 
standards and technologies. 
In this project, multiple visualizations of the same data are be 
achieved through Extensible Stylesheet Transformations (XSLT) 
technologies [18].  Using a structured data representation from 
the Chemical Engineering community, Chemical Markup 
Language (CML) [3], we will demonstrate a set of web-ready 
methodologies for processing, publication and display that can be 
applied to any XML dialect or structured data source.    

1.1 Extensible Markup Language (XML) 
The World Wide Web Consortium’s (W3C) metalanguage 
codification of XML has opened new and powerful opportunities 
for information visualization as a host of structured data can now 
be transformed and/or repurposed for multiple presentation 
formats and interaction venues.  XML is a textual format for the 
interchange of structured data between applications [18, 7, 15].  
The great advantage of XML is that it provides a structured data 
representation built for the purpose of separating content from 
presentation.  This allows the advantage of manipulating and 
transforming content independently of its display.  It also 
dramatically reduces development and maintenance costs by 
allowing easy integration of legacy data to a single data 
representation which can be presented in multiple contexts or 
forms depending on the needs of the viewer (a.k.a. the client).  
Data thus becomes ‘portable’ and different formats may be 
delivered and presented (styled) according to the application’s 
needs.   

Another important aspect of XML is the tools that it provides: 
the DTD and Schema. The Document Type Definitions (DTD) 
defines ‘valid’ or ‘legal’ document structure according to the 
syntax and hierarchy of its elements.  The Schema specifies data 
types and allowable expressions for element’s content and 

 

 
 
 
 
 
 
 
 
. 
 

Copyright © 2003 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2003 ACM 1-58113-644-7/03/0003 $5.00

85



attributes; they describe the document’s semantics.  Using any 
combination of these, high-level markup tags may be defined by 
application developers and integration managers.  This allows 
customized and compliant content to be built for use by authors 
and domain specialists.  These tags could describe prototyped 
user-interface elements, humanoid taxonomies, or geospatial 
representations [14].  Developers can describe the valid 
datamodel for their application by using the DTD and Schema, 
share it over the web, and standardize it amongst their 
community. 

XML can be as strict or as open as needed: content or fragments 
of content can be ‘well-formed’ and still processed with most 
XML tools.  Typically, data validation is at author time, but it 
can be done at serving, loading, or runtime if needed.  From an 
XML-compliant source document or fragment, logical 
transformations (Extensible Style Sheet Transformations 
(XSLT)) can be applied to convert the XML data and structure to 
another XML document or fragment.  A series of such 
transformations may be applied ending with a presentation-layer 
transformation for final delivery target style, content-type 
integration, and display. [7, 15, 18].  Common XSLT design 
patterns have been described [7]; those used in the first phase of 
visualization evaluation were: fill-in-the-blank, navigational, 
rule-based, and computational.   

1.2   Extensible 3D (X3D) 
The Web3D Consortium’s next-generation successor to VRML is 
X3D which, like XML, moves beyond just specifying a file 
format or a language like VRML or HTML.  It is a set of objects 
and interfaces for interactive 3D Virtual Environments with 
bindings defined for multiple profiles and encodings and 
collected under a standard API [13, 14].  The X3D specification 
describes the abstract performance of a directed, a-cyclic 
scenegraph which can be defined by an XML binding using 
DTDs and Schema [14].  Also, rather than defining a monolithic 
standard, the X3D specification is modularized into components 
which make up ‘Profiles’.  Profiles are specific sets of 
functionality designed to address different application domains 
from simple geometry interchange or interaction for mobile 
devices and thin clients to the more full-blown capabilities of 
graphical workstations and immersive computing platforms. 

The X3D Task Group has provided a DTD, Schema, an 
interactive editor, and a set of XSLT and conversion tools for  
working with X3D and VRML97.  Publishing techniques fro 
Web3D are discussed in detail in section 2, but since native X3D 
browsers are not yet widely deployed, most of the power of the 
transformation and composition of X3D happens ‘behind the 
scenes’ and then presented with a VRML97 viewer.  The official 
file extension for X3D files is .x3d and the official MIME 
type for X3D files is defined as: model/x3d.  A 
comparison of X3D encodings is shown in Table 1. 

Table 1.  X3D Encoding Comparison 

VRML-style 
encoding 

XML encoding 

Nodes Elements (tags) 

 fields  Un-writable attributes (readable) 

 eventOuts  Un-writable attributes (readable) 

 eventIns  Un-readable attributes (writable) 

VRML-style 
encoding  

XML encoding  

 exposedFields  Writable, Readable attributes 

ROUTES Elements (tags) 

 

VRML-style encoding File Header 

#VRML V3.0 utf8  

PROFILE  Interactive 
COMPONENT Scripting:1 
META "key value string" "value string" 
Group { … }  

XML encoding File Header 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE X3D PUBLIC "-//Web3D//DTD X3D 3.0//EN" 

"http://www.web3d.org/specification/x3d/x3d-3_0.dtd"> 
<X3D version="3.0" profile="Interactive"> 

<head> 
 <component name="GeoData"/> 
     <component name="Nurbs" level="2"/> 
      <meta name="description" content="X3D scene header example"/> 
   </head>   

<Scene> … </Scene> 

</X3D> 

 

In addition to the suite of diverse low-cost tools XML 
technologies provide for transformation and presentation, other 
bonuses of using the XML encoding and XML tools for X3D is 
that it could integrate with Scalable Vector Graphics (SVG), 
Synchronized Multimedia Integration Language (SMIL) for 
example [18, 14]. 

1.3 Chemical Markup Language (CML) 
CML is a new approach to managing molecular information. It 
has a large scope as it covers disciplines from macromolecular 
sequences to inorganic molecules and quantum chemistry. CML 
is new in bringing the power of XML to the management of 
chemical information.  CML contains a number of kinds of 
information about a particular compound, from its physical 
atomic structure and elemental makeup to its water solubility, 
melting point, atomic weight, and various spectral descriptions. 
These are manifested by a variety of datatypes in tags describing 
structural, numerical, and meta data about the chemistry of the 
molecule.  Dr. Peter Murray-Rust, Dr. Henry Rzepa, Dr. Michael 
Wright, and the other developers of CML have provided a DTD, 
Schema, and API toolkit (CMLDOM).  In addition, they provide 
Jumbo, a Java-based application to load and view a number of 
chemical formats in CML (CIF, MDL, MOL2, PDB, XYZ 
JMOL) and write them out to any of those formats. [3] 

Of immediate interest for Web3D Visualization was the top-level 
<molecule> tag and its children the <atomArray> tag with 2D or 
3D Euclidean coordinate children naming the atoms and 
describing the atom type and location, and the <bondArray> tag 
describing the bonds between the various atoms.  Structural and 
geometrical information was not the only interest for Web3D 
display since CML carries much more: <formula><float><string> 
each describing important compound data such as the formula, 

86



physical properties, and official and alternate names respectively.  
In addition, <chimeral: spectrum> tags are included in some 
compound files which describe the measured infrared and 
ultraviolet/visible spectra exhibited by the molecule. 

2. OVERVIEW OF WEB3D PUBLISHING 
Publishing data for multidimensional visualization over the web 
has shown 3 principal requirements which are met by open 
standards: a structured yet flexible data format to describe and 
deliver real-time 3D objects and environments, scalable 
pathways to integrate and distribute intellectual property to 
common platforms (WWW, CD, DVD), and interoperable and 
reusable content which is not bound to proprietary tools and 
systems.  When architecting such systems, developers take into 
account the data source and production workflow (logical 
transformations) and consider the needs of target platforms and 
the delivery mechanisms (presentation transformation): 
hardware, software, connectivity, runtime integration.  Using this 
information, application scene-graphs are designed and built to 
one or more of the multiple Profiles specified by X3D: 
Interchange, Interactive/MPEG-4, Extensibility, Immersive 
(VRML97), or Full [12].  X3D provides authors the power to add 
and integrate new nodes and application components; and allows 
points of interoperability with W3C and MPEG media.   

Web3D publishing and content management for open standards 
systems can be divided into 3 basic kinds: the export or 
publication of a VRML file which can be run in a web browser 
or embedded in an HTML page (with internal and external 
ECMAscript or Java scripting), the compositing of VRML parts 
from a database and delivered from a webserver (e.g. PHP, 
MySQL, Perl, Java) as above, and more recently with X3D, the 
transcoding/transformation of XML data to X3D for delivery or 
other Web presentation as VRML, or HTML formats (e.g. 
Perl+XML, Java+XML, Apache Cacoon).  This last method, also 
the topic of this work, uses Extensible Stylesheet 
Transformations (XSLT) to easily convert the scene-graph 
representation between encodings and formats.  The X3D Task 
Group of the Web3D Consortium has developed a set of XSLT 
stylesheets and hundreds of translated content exemplars 
included on the Web3D Consortium X3D Software Development 
Kit CDs (2000-2002) [14]. 

2.1 Producing Web3D Visualizations 
We divided the scene into ‘blocks’ which described the various 
functional parts of the scene.  These were: 

1. Define environment & locations 
2. Define user interface & Viewpoints 
3. Model objects & Prototypes 
4. Define interactions 
5. Organize and collect scene 
6. Optimize scene with post-production tools 

 

The degree of ‘granularity’ & ‘encapsulation’ in the scene 
abstraction will impact the data representation, its production, as 
well as its storage and retrieval- design is 80% of production!   

 

 

 

 

The result of this approach was an implicitly structured X3D 
‘Document’ describing our various CML scenes in the form of: 

     Content type  
 Header     
 PROTOs & EXTERNPROTOS 
 World set ( Backgrounds,  ProximitySensor) 
 HUD & User Interface 
 Scripts 
 Environment & Populus set (molecular geometry) 
 ROUTES 

 
This allowed a modular structure to the scene that could be build 
from any number of applications or databases to the final target 
presentation. 

2.2 Publishing Web3D Visualizations 
A number of web, print [13], and conference resources detail the 
production and publication techniques of VRML97, so we will 
not address those here.  These techniques are usually described 
for use with the common and capable web browser plug-ins [1, 
11, 12].  A number of standalone browsers and application 
tookits for VRML97 also exist such as OpenWorlds [11] and 
Xj3D [14] both of which are X3D capable.  Still, given the 
widespread web support of VRML97, we considered VRML97 
the default presentation layer format for our Web3D project.   

Recent work worthy of mention for our CML X3D project are the 
XML capabilities of X3D that work before it is delivered to the 
user. The X3D Task Group has provided a number of these, such 
as XSLT style-sheets for the transformation of:  X3D -> 
VRML97, X3D -> HTML, and X3D -> wrap/unwrap.  Also, 
courtesy of the National Institute of Standards Technology 
(NIST), a translator application for VRML97 -> X3D data 
migration that has been made freely available and been 
integrated into a number of Web3D editing tools including X3D 
Edit and White Dune. [14, 16] 

XML/XSLT approaches to data management and web 
presentation can be divided into 2 kinds: the back-end production 
of a file archive, and the serving of a source document in 
response to a ‘live’ (networked) transformation request (see Fig. 
1).  Given server overhead, bandwidth, and delivery contraints, 
periodically auto-generating a web-ready content archive may be 
appropriate.  These approaches use X3D source files and 
directories (with naming conventions) with scripted XSLT to 
produce framed HTML, VRML, and X3D document trees 
complete with linked with chapters, titles, and embedded views 
of the source file.  The generated document trees can be 
organized and hyperlinked for  navigation with a web browser 
[14].  The auto-generation can be done with straightforward 
batched XSLT Java [9] or Perl [6] scripts.  These content 
publications can then be served over the web or distributed on 
CD or DVD.  The second approach is using XSL 
Transformations ‘on the fly’ using common web server software 
such as Apache Cacoon [17] or Perl and the XML Gnome Libs 
[6].  This approach can provide custom or database-driven 
presentations of the source data with a proportionate server 
overhead.   

Kim and Fishwick [8] demonstrated the power of the 
content/presentation distinction when they used XML, Schemas, 
and XSLT to render their XML descriptions of dynamic, physical 
systems to different visual and system metaphors they call rubes.  

87



Dachselt et al. [4] demonstrated an abstracted, declarative XML 
and Schema to model Web3D scene components and especially 
interfaces.  The systems described in these papers in addition to 
the display conventions of molecular viewing software influenced 
the design and development of this project. 

Sufficiently impressed with the power of XSLT and other XML 
technologies in the Web3D publication pipeline, we embarked on 
our demonstration CML-X3D XSLT implementation described 
below (section 3.2).    XSLT programming is relatively 
straightforward and a number of free tools are available so we 
used this phase as a highly-iterative development cycle where 
each 3D scene-graph architecture and visualization mode 
(rendering) was evaluated with respect to other chemical 
visualization applications and kinds of display interactivity they 
used.  We developed 3 versions of the cml2x3d.xsl style-sheet 
each adding the necessary X3D nodes and logic to achieve the 
display and interactive context of the visualization.  We also used 
the X3D to VRML97 XSLT stylesheets provided by the X3D 
Task Group to transform these X3D files to final VRML97 
presentations.   

 

Figure 1.  Overview of Web3D Publishing 

3. EXTENSIBLE STYLESHEET 
TRANSFORMATIONS FOR INTERACTIVE 3D 
CHEMISTRY  
Numerous developer resources exist for the World Wide Web 
Consortium’s (W3C) XSLT specification [2, 7, 15, 18] so we 
will focus on the design issues specific to CML and X3D.  
However, a review of the typical XSL Transformation process is 
in order: 

1. An XSLT engine parses the source XML document into 
a tree structure its various nodes 

2. The XSLT engine transforms the XML document using 
pattern matching and template rules in the .xsl  style-
sheet  

3. Template elements and attribute values replace matched 
element/attribute patterns in the source document in the 
result document. 

First, for each of our XSLT files, we specified the XSL attributes 
of the output method, encoding, media-type, and cdata-section-
elements, and the DOCTYPE system for our result X3D 
document.  Next, we matched the root element of the source 
document and wrote out our <X3D> XML header information to 
the result document.  This manifested a blank X3D <Scene> (as 
in Table 1) into which we could apply our other template rules 
into an X3D node structure.  The root-element template also 
supplied 3D environment-specific X3D nodes to the result 
document such as <ProtoDeclare>s, <Background>, 
<PointLight>, <NavigationInfo>, entry <Viewpoint>, and any 
required <Inlines>.  When transforming CML to X3D, we 
assume 1 Angstrom = 1 Meter for our coordinate units. 

3.1 Design 
As a design approach, we began with the minimum number of 
nodes required to represent the basic CML molecular geometry 
(atoms and bonds) since that was the first target for simple 
visualization in 3D.  However, for our purposes of maximum 
visualization (seeing as much of the CML information as 
possible), efficient representation was best achieved through the 
use of the PROTO node, Text node, and others which required 
the VRML97 Profile or higher.  Story-boarding, scene-design, 
and prototyping where crucial to this process.  It is conceivable 
that other, future applications may only use the Interchange or 
Interactive profile depending on the kind of data they are 
exchanging or interactivity they require.   

For our transformations, we defined X3D <ProtoDeclare> 
prototype nodes for each chemical element the style-sheet might 
encounter as an <atom> CML tag.  We did not cover all cases, 
but defined a color, atomic radius, and element label for: Carbon, 
Hydrogen, Nitrogen, Oxygen, Flourine, Silicon, Phosphorus, 
Sulphur, Chlorine, Bromine, Iodine, and a default ‘unknown’.  
We exposed the X3D atom prototype’s position and transparency 
fields for future event routing. Next declared as X3D 
<ProtoDeclare>s were: an <IndexedLineSet> to draw chemical 
bonds described in the CML <bond> tags, and a set of 3 <Text> 
node headings for the display of titles, formulae, and other 
annotations.  Encapsulating these objects as PROTOs meant that 
we could change the displayed form of the instantiated objects 
relatively easily; for example using some other geometry besides 
a colored sphere for atom or white lines for a bond (see Fig. 2). 

After we determined satisfactory display transformations for the 
molecular geometry, we then added more robust examples of 
data display and model interaction.  These examples changed the 
presentation’s interactive context.  These included more 
advanced capabilities for interaction with: billboarded text, 
transparency sliders, measuring planes, gimbals, and drag 
sensors.  Each version used its own XSLT stylesheet to generate 
the different X3D environments from the same CML source file.  
These transformed 3D environments provided varying degrees of 
information and interaction richness; the basic result could be 
used to see the fundamental structure of  the molecule, another 
result provides a level of manipulation that may be appropriate 
for a high-school chemistry class, while the last provides more 
powerful affordances tuned to expert or collegiate use. 

 

 

 

88



3.2 Implementation 
After assembling all our scene resources for the X3D result, we 
next addressed the top-level <molecule> element in the source 
CML document directly in another template-match.  According to 
the CML DTD [3], any <molecule> tag may contain a <formula>, 
<atomArray>, <bondArray>, or <date> tag and any number of 
<string> or <float> children tags.  Since the <molecule> tag 
contains some attributes of interest, we began with a 
<ProtoInstance> of our “title_text” Proto.  We declared an 
<xsl:variable name=”$fullname”> whose selected value is the 
concatenation of the <molecule title=””> and the context’s child 
<formula> information. This string was then used as the ‘txt’ 
attribute filed for the title_text prototype and transformed to an 
arbitrary textual information plane, <Billboard>, or HUD.  A 
XSLT for-each structure then recurses annotation positioning and 
font size (as “ano1_text” and “ano2_text” <ProtoInstance>s) as it 
extracts the CML molecule’s <float> and <string> children tag 
and attribute information to the display plane.   

We continue defining XSLT templates to evaluate the 
geometrical properties of the CML compound as in the 
<atomArray> and <bondArray> tags.  When we match the CML 
<atomArray> tag, we begin an X3D <Group> and recurse for-
each <atom> testing if it contains 2D or 3D coordinate 
information and recording its ID in an <xsl:variable>.  
Addressing elements and attributes for variables and conditionals 
in XSLT is done through Xpath expressions (see the code or the 
resources cites for more).  If the <atom> is has 3 dimensions, we 
concatenate those into an <xsl:variable> describing the atom’s 
position; and instance it with a DEF’d <ProtoInstance> of the 
proper chemical element.   If it only has 2 dimensions, we 
assume z = 0 in our position variable and similarly instanced a 
proper and positioned, DEF’d atom.  Each atom was instantiated 
in the result X3D scene-graph with a unique name as well as 
exposedFields for position and transparency animation control.  
The </Group> was then closed, completing atom translation 
processing.  The design of variables and prototyped node objects 
is certain to be application-specific; ours were the result of the 
design process described above. 

Next, we wrote a template to process and translate the CML 
<bondArray> tag.  This template was also written enclosed in an 
X3D <Group> tag.  Within this context, the CML <bond> tag 
commonly describes the ID (or DEF) name of the bond, between 
which 2 atoms the bond exists, and the ‘order’ of that bond (e.g. 
1, 2, 3) [3].  For-each bond order, we initialized a set of 
<xsl:variable>s which retrieved the bonded atoms’ coordinates 
(via an Xpath expression) and supplied those as a 
Vector3FloatArray exposedField to  the named “line” 
<ProtoInstance>.  This template is simplistic in that higher order 
bonds are always drawn offset to the first bond with a positive 
slope computed by mean, regardless of quadrant.  This 
arithmetical fix could be achieved with more enumerated cases 
in the XSLT.  We note that in the application of chemical 
engineering, other bond representations and information would 
be relevant.  This is a fertile area for future work and 
collaboration with scientific and educational end-users.   

 

 

 

3.3 Delivery 
We targeted VRML97 for the final presentation format as a 
number of robust viewers exist for web distribution and the X3D 
Task Group provides a free, open-source pathway for conversion 
[14, 1, 11, 12].  We wrote a series of XSLT style-sheets each 
adding more user-interface widgets to manipulate and view the 
molecule and its physical data (see Fig. 3).  Given an X3D 
document in the XML encoding, users can view it in an X3D-
capable browser directly, or developers can apply other XSLT 
style-sheets not only to transform the data to different X3D 
Profiles or presentational formats (VRML97, HTML, POV, PDF, 
etc), but also ‘style’ the data according to the user-target and the 
associated template rules.   

Once the XSLT style-sheets are designed and written, the final 
presentation files can be auto-generated from the source XML 
with Java or Perl scripts [6, 9, 2].  The resulting document trees 
can then be served from a website or otherwise published on a 
CD-ROM or DVD.  The CML Source files for a number of 
compounds, XSL Transformations files, X3D, and VRML97 
result files for this project are browsable at: 
http://www.3DeZ.net/X3D/CML.  The other delivery method 
using our XSLT stylesheets is for the server-side (‘on-the-fly’) 
transformation of the XML representation using software such as 
Apache Cacoon, and Perl [17, 6].   

A natural extension of our stylesheets would be to deploy them 
for the server-side customization of display form and interactivity 
context rather than archival release.  For example, a student 
visiting an online course has shown or specified that 3D 
exploration tasks with an expert interface are preferred and they 
need a specific geometry type to represent molecules and bonds 
in 3D.  Using Cookies, a user database, and a geometry and user 
interface repository in conjunction with XSLT, the system may 
serve them an integrated 2D/3D graphical user interface with full 
interactive control and modify the rendered colors and 
geometries of the content according to this preference.  This 
personalized delivery of a single data representation again 
illustrates the power of XML and XSLT in regards to data 
portability and re-use.   

4. RESULTS AND FUTURE WORK 
This project demonstrates the conceptual and technical power 
gained through the separation of presentation and content and the 
use of web standards.   In the field of chemistry, the XML dialect 
of Chemical Markup Language provides a structured and 
manageable format for the conversion and sharing of common 
molecular data files.  When considering the re-use of a single 
representation for multiple presentation forms and contexts such 
as the delivery of multimedia web curricula, an online lab, or an 
educational CDROM, the portability advantages of XML become 
clear: increased distribution for lower production and 
maintentance overhead.  By building our application with the 
XML encoding of X3D, we have shown flexible transformation 
paths for CML to real-time 3D visualization using common 
toolkits and languages such as XSLT, Perl, and Java.  These 
same rule-based and computational approaches may be applied to 
visualize virtually any XML data in real-time 3D. 

89



 

There are a number of fertile areas for future work with CML, 
XSLT, and X3D.  Respectively:  

• Expound user requirements and formalize CML -> X3D 
templates to address visualization needs of educators, 
chemical engineers, and researchers.  The stylesheets 
could then be applied to the NIST WebBook [10] or 
other chemical data repository for example. 

• Work is progressing on componentized taxonomies and 
mark-up for 3D User Interfaces (UIs) [4, 5] and this is 
also a prime area for future research and development.  
This would entail working with VR HCI researchers and 
accessibility experts to develop a descriptive and 
framework for composing user-interfaces in information-
rich 3D worlds.  This would also include improving and 
formalizing widget-component libraries. 

• Explore and evaluate serialization and performance 
issues for runtime control through the Scene Access 
Interface and the Document Object Model (DOM) 
scripting and integration.   

5. ACKNOWLEDGMENTS 
Many thanks to Dr. Don Brutzman and the X3D Task Group for 
continued guidance during the evolution of this application and 
X3D, Dr. Murray-Rust who welcomed and oriented me to CML, 
as well as Dr. Doug Bowman and the other faculty at Virginia 
Tech who reviewed this manuscript. 

6. REFERENCES 
[1] Blaxxun Contact VRML Browser  [Win] 

http://www.blaxxun.com 

[2] Brown, Martin. XML Processing with Perl, Python, 
and PHP, Sybex, San Francisco, 2002 

[3] Chemical Markup Language (CML) 

http://www.xml-cml.org 
http://www.ch.ic.ac.uk/rzepa/chimeral/ 

[4] Dachselt, Raimund; Hinz, M., Meissner, K.,. 
“CONTIGRA: An XML-Based Architecture for 
Component-Oriented 3D Applications”, Proceedings 
of the Web3D 2002 Symposium, ACM SIGGRAPH 
2002 

[5] Figuroa, Pablo, Green, M., Hoover, H.J.  “InTml: A 
Description Language for VR Applications”, 
Proceedings of the Web3D 2002 Symposium, ACM 
SIGGRAPH 2002 

[6] Gnome XML & XSLT Libs for Perl 
http://www.gnome.org 

[7] Kay, Michael. XSLT Second Edition, Wrox Press, 
Birmingham UK, 2001 

[8] Kim, Taewoo and Fishwick, Paul. “A 3D XML-Based 
Customized Framework for Dynamic Models”, 
Proceedings of the Web3D 2002 Symposium, ACM 
SIGGRAPH 2002 

[9] McLaughlin, Brett. Java & XML Second Edition, 
O’Reilly, Cambridge, 2001 

[10] NIST WebBook   http://webbook.nist.gov/chemistry/  

[11] OpenWorlds Software :  Viewers and Tooklits 
http://www.openworlds.com 

[12]  Parallel Graphics’ Cortona VRML Browser 
http://www.parallelgraphics.com         [Win, Mac, …] 

[13]  Walsh, Aaron and Sévenier, Mikael. Core Web3D.  
Prentice-Hall, Upper Saddle River, NJ, 2001 

[14]  The Web3D Consortium  

Specifications: Extensible 3D (X3D), Virtual Reality 
Modeling  Language (VRML- ISO/IEC 14772:1997) 

http://www.web3d.org/fs_specifications.htm  

X3D TaskGroup:  http://www.web3d.org/x3d.html 

Software Development Kit:  http://sdk.web3d.org 

Xj3D Open Source X3D/VRML toolkit:  

http://www.web3d.org/TaskGroups/source 

[15]  White, Chuck. Mastering XSLT, Sybex, San 
Francisco, 2002 

[16]  White Dune X3D-VRML authoring/animation toolkit 
for Linux + UNIX w/ input devices 

http://www.csv.ica.uni-stuttgart.de/vrml/dune/ 

[17]  Williams, Clifton. “Network Application Server using 
XML to Support Distributed Databases and 3D 
Environments” Master’s thesis Naval Postgraduate 
School.  http://theses.nps.navy.mil 

[18]  The World Wide Web Consortium  

Specifications: 

Extensible Markup Language (XML): 
http://www.w3.org/XML  

Extensible Stylesheet  Transformations (XSLT): 

http://www.w3.org/TR/xslt11 

 

90



 
 
 

 
Figure 2.  Result of the basic CML2X3D transformation. 
XSLT stylesheet 1 produces a visualization of the molecular 
structure with a fixed transparency and the related 
compound information is shown on an arbitrary plane 
behind the furthest atom with a default font. 

 

 
Figure 4.  CML2X3D transformation results with additional 
user interface controls.  XSLT stylesheet 3 adds to the 
visualization of stylesheet 2 by placing text on a Billboard 
and introducing gimbals for molecule orientation control.  In 
addition, a PlaneSensor allows direct manipulation of the 
molecule’s location. 

 
 
 
 
 

 

 
Figure 3.  CML2X3D transformation results with additional 
user interface controls.  XSLT stylesheet 2 produces a 
similar structural visualization to stylesheet 1, but 
introduces a slider widget whose behavior is routed to each 
atom’s transparency.  The text content is now bold and san-
serif and measuring planes are added to the environment.  
These allow the user to drag the grid along its orthogonal 
axis and read the coordinate value. 

 

 
 

 

 

 

 
User interface widgets developed by X3D Task 
Group and published online and on the Web3D 
Consortium’s Software Development Kit (SDK). [14] 

 
Source data CML files for a number of compounds, 
these XSLT stylesheets, and the result documents 
are available at: 

http://www.3DeZ.net/X3D/CML 
 

Stylesheet Transformations for Interactive Visualization  
VRML97 Screenshots 

Nicholas F. Polys, Virginia Tech 

205


