

Lidar Pipelines for Immersive and Web3D Visualization

Nicholas Polys, ARC, CS Cully W. Hession, BSE Peter Sforza, CGIT John Munsell, Forestry Adam Taylor, CSC Haitao Wang, CGIT Virginia Tech

SilviLaser 2017

Introduction

General Workflow

- 1. Acquisition
- 2. Data Processing
- 3. Analysis
- 4. Publishing and Visualization
 - a. Immersive 3D
 - b. Web3D
- 5. Future Work

Drone-based Lidar

https://www.youtube.com/watch?v=DO35QIAPrtg&t=256s

YellowScan Puck

payload

The LiDAR System

- YellowScan[®] Core System Mapper
- Integrated w/Vapor35
- Multi-echo LiDAR sensor GNSS RTK + PPK receiver, bi-frequency L1/L2
- Calibrated IMU
- Embedded computer
- Data pre-processing software
- 1 to 2 returns
- ~200 pts/m² @ 20 m
- Data recorded to USB stick, includes:
 - IMU and GPS real-time recordings
 - Scanner data

Processing

.las files co-registered and geolocated....

Noise removed, tiled for processing:

- 1. LASTools = > ARCGIS
 - a. HTML5: potree

- 2. LASTools => CloudCompare
 - a. X3D
 - b. HTML5: X3DOM

Derived

Products

GPS:

DTM (TIN),

Aspect

Slope

CHM

3D Visualization

Rendering essentials:

Colors, Normals, visual mass, lighting, ...

MP4: Movie Fly-throughs w/ CloudCompare

Extensible 3D (X3D): Immersive CAVE @ VT Visionarium,

... HTML5 + Service-based mashups!

Precision Technologies for Agroforestry - Virginia Tech

time right now and but we're still able to see the structure of the creek, the density

Classified Cloud

Interactive 3D

in HTML5

w/ mouse

potree

Web3D: Extensible 3D (X3D)

TIN, Imagery, Tree locations

Haitao Wang, Xiaoyu Chen, Nicholas Polys and Peter Sforza (2017). "A Web3D Forest Geo-Visualization and User Interface Evaluation". In Proceedings of the 22nd International Conference on 3D Web Technology (Web3D '17). ACM, New York, NY, USA.

Requirements

- Metadata Scheme for provenance throughout the lifecycle:
 - Acquisition
 - Transport
 - Processing
- Include points as well as quantitative, categorical, and nominal attributes per point
- A rich visual Palette to render points to visual form (e.g. Web3DS)

Visualization w/ Web3D Standards

- Extensible 3D (X3D) is a royalty-free and openly published ISO/IEC Standard developed by the not-for-profit Web3D Consortium [web3d.org]
- Metadata can annotate any node
- PointSets make coords, colors, and normals easy, but are not lit, texture-mapped, or collide-able.
 - ParticleSets have been demonstrated to address these
- Surfaces, lines, and points can be compressed
- Full-fledged interactive 3D scenes and webpages via OpenGeospatial Consortium (OGC) Web3D Service

HTML5 + X3D

Using 3D Compression

1) 440K points = 23MB.ply, 21MB.x3d

- 2) Compressed.X3D = 3.4 MB
- 3) Interaction through Web and WebVR
 - 50-60 fps on laptop
- 4) Gltf Inline also demonstrated

Future Work

Requirements : Durability, Interoperability, Accessibility

Two fronts:

- Standards Advocacy ISO/IEC standards to support requirements
- Consumer Advocacy Vendors to support ISO/IEC standards

Thanks

See Also:

Annual SIGGRAPH Carto BOF -

Polys & Russalesi present X3D and Web3DS in minutes 8-27 also includes Cesium & ESRI presentations

https://youtu.be/6ttQUhnu4SQ

- VT Stream Lab
- Catawba Sustainability Center
- Advanced Research Computing
- Center for Geospatial Information Technology

Join Us~!

Nicholas Polys

npolys@vt.edu

• VT NEWs short form:

 https://vtnews.vt.edu/articles/2017/07/outreach-dronesatcatawb a.html

long form *(5 min)

https://www.youtube.com/watch?v=DO35QIAPrtg&spfreload=5

Locations

Catawba Sustainability Center

32 million points, 8 columns

Stroubles Creek & Doc's Branch

57 million points, 8 columns

