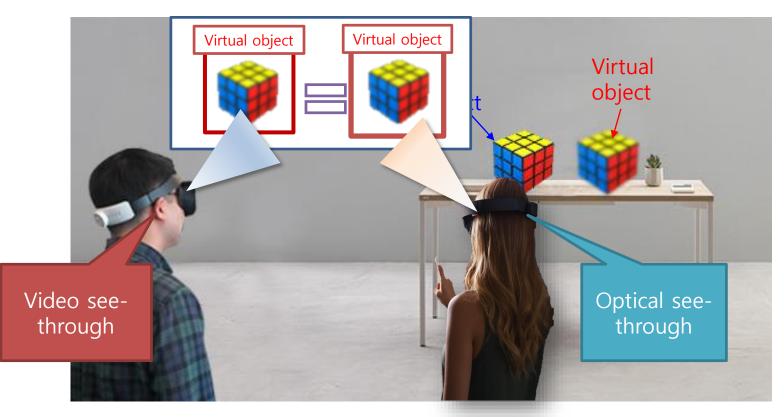

Standard for metadata configuration to match scale and color difference among heterogeneous MR devices

ISO-IEC JTC 1 SC 24 WG 9 Meetings, Jan., 2019 Seoul, Korea

> Gerard J. Kim, Korea Univ., Korea Dongsik Jo, Wonkwang Univ., Korea Howon Kim, ETRI, Korea

Motivation


 Participant's perceptions of virtual object according to different mixed reality devices (e.g. color or scale)

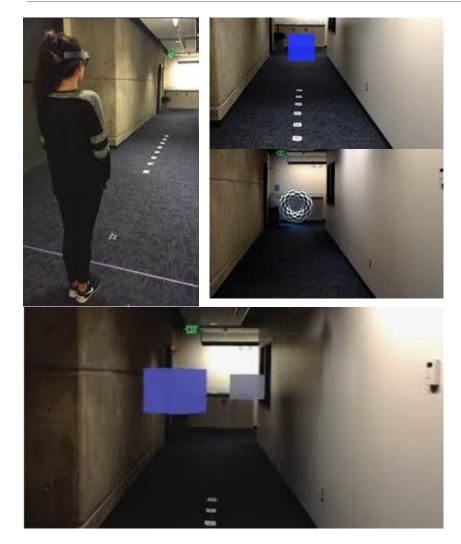
 ✓ Participants must be able to consistently perceive color and scale among different MR devices (same color and size)

CorrectAR (MatchAR)

✓ To perceive the same color and scale among different MR devices

✓ Validation experimental standards : setting, procedure, …

Previous works (1/2)



Users under-estimate egocentric distance in a VE

Throwing at a shorter distance

Third Person View and Guidance For More Natural Motor Behaviour In Immersive Basketball Playing (VRST 2014)

Previous works (2/2)

Various design decisions affect user depth perceptions

- Aerial perspective
- Billboarding, cast shadows
- Ray tracing
- Dimensionality (2D VS. 3D)
- Shading
- Texture

Designing for depth perceptions in augmented reality (ISMAR, 2017) https://www.youtube.com/watch?v=kLQ-gN99QBw

How to derive the standard guideline

With respect to AR/MR, What may be parameters to affect user perceptions

- Independent variables : Display type, distance,
- Dependent variables : Perceived size(scale), color difference

between virtual and real

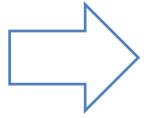
Validation experimental standards for mixed and augmented reality

- Control variables
- Experimental setup
- Procedure

Parameters to affect user perceptions

Parameters to affect user perceptions

Device characteristics

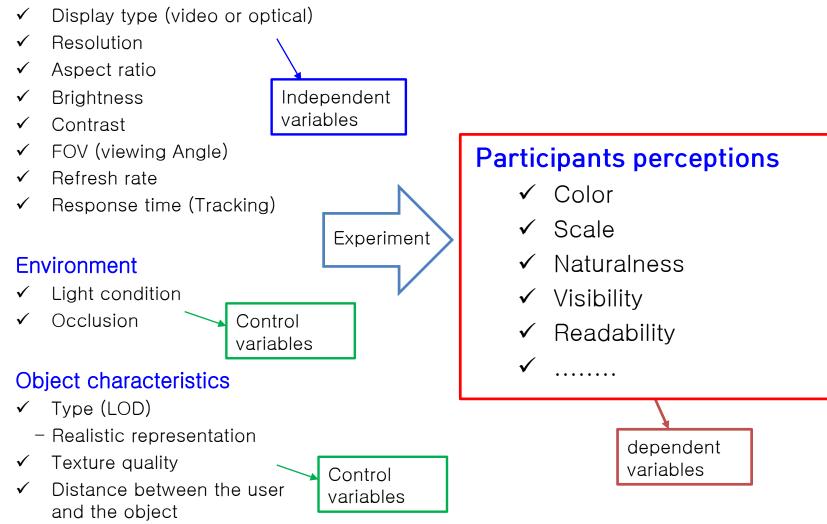

- ✓ Display type (video or optical)
- ✓ Resolution
- ✓ Aspect ratio
- ✓ Brightness
- ✓ Contrast
- ✓ FOV (viewing Angle)
- ✓ Refresh rate
- ✓ Response time (Tracking)

Environment

- ✓ Light condition
- ✓ Occlusion

Object characteristics

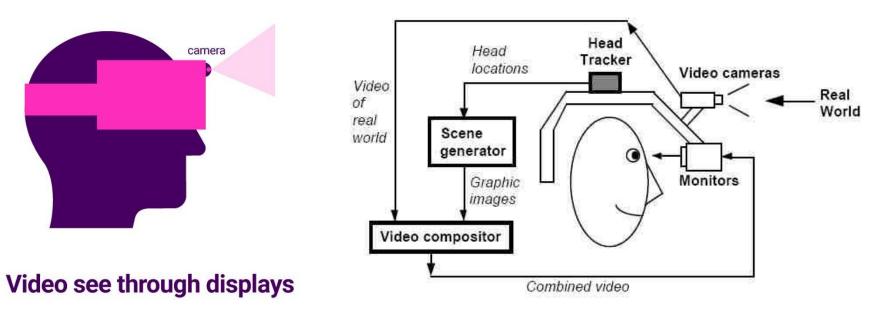
- ✓ Type (LOD)
 - Realistic representation
- ✓ Texture quality
- Distance between the user and the object
- ✓ Viewing direction


Participants perceptions

- ✓ Color
- ✓ Scale
- ✓ Naturalness
- ✓ Visibility
- ✓ Readability

✓

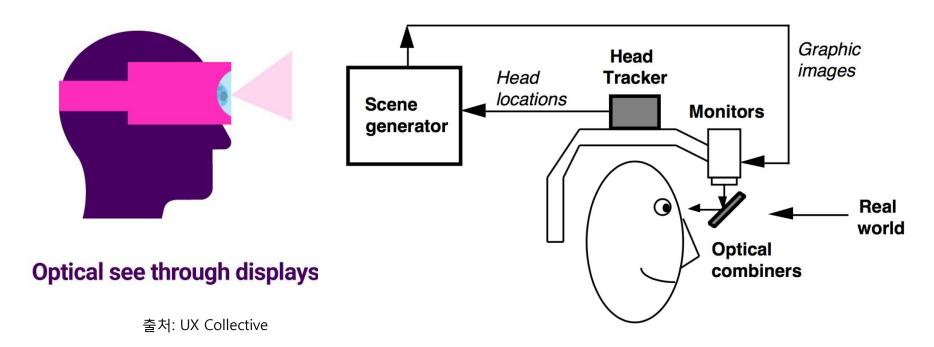
Parameters to affect user perceptions


Device characteristics

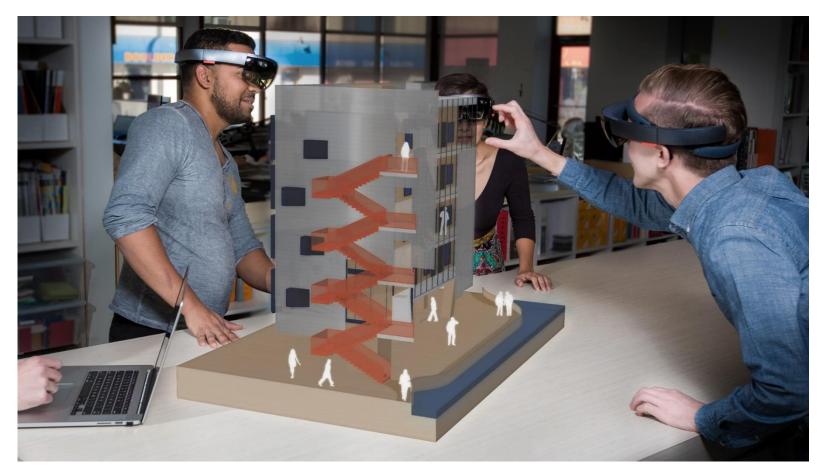
✓ Viewing direction

Validation experimental standards

Display type (Video see-through HMD)


출처: UX Collective

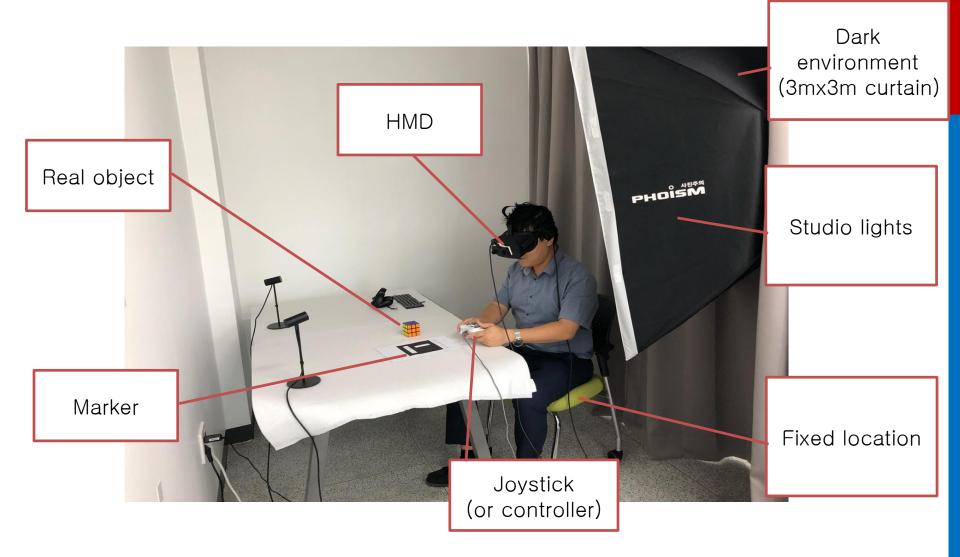
Display type (Video see-through HMD)


Ovrvision

http://ovrvision.com/entop/

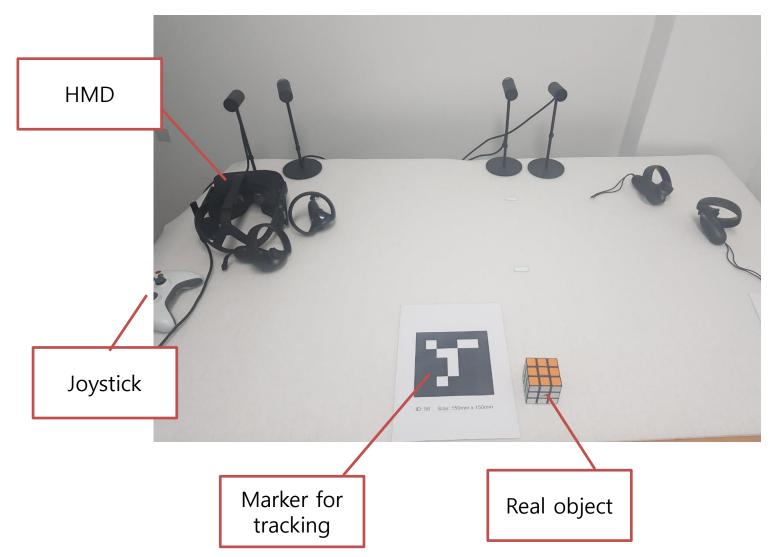
Display type (Optical see-through HMD)

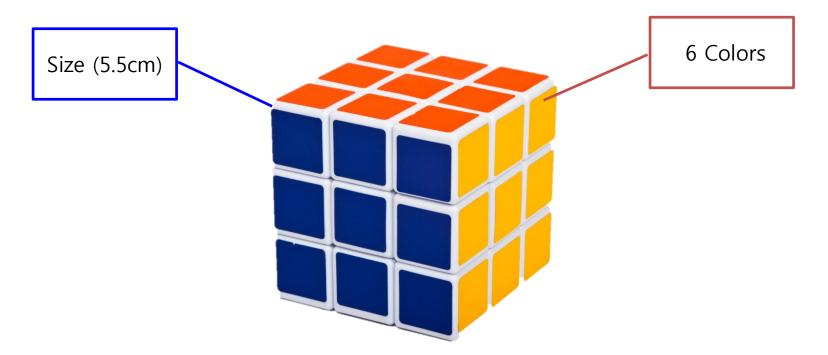
Display type (Optical see-through HMD)



https://www.microsoft.com/en-IE/hololens

Display type (Optical see-through HMD)

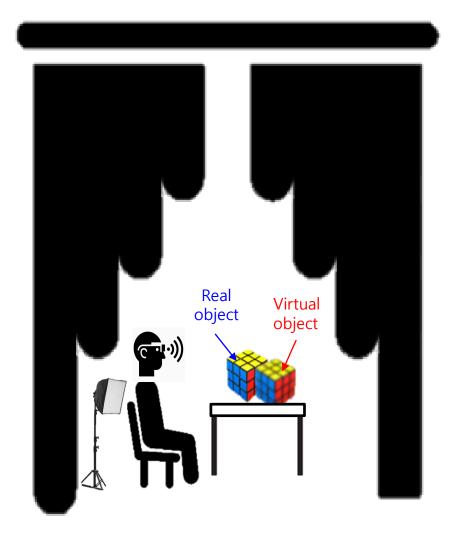

MS Hololens



Video see-through HMD Optical see-through HMD

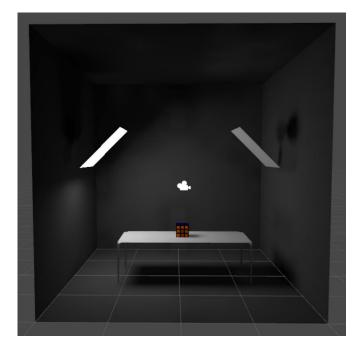
Real object for comparison

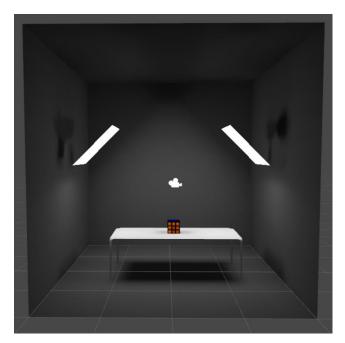
Real Cube



✓ Use cubic puzzle for scale/color comparison

Control variables


- Light condition
- ✓ Install curtain to match light condition
- ✓ Install studio lights
 - Same light condition



Realistic Rendering

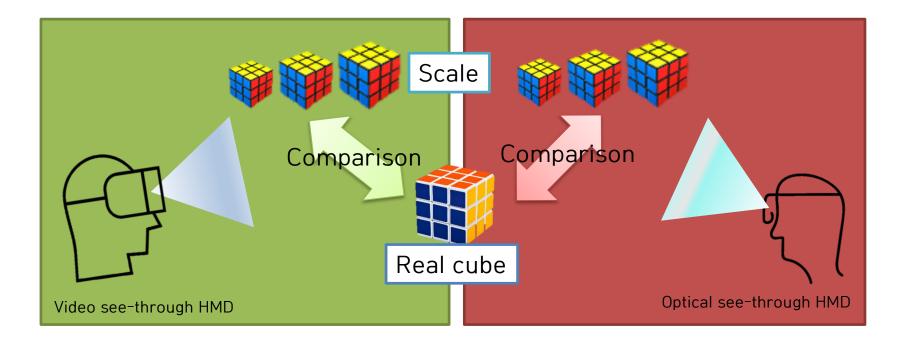
- \checkmark Matching between real and virtual environments
 - Same lights and shadow
 - e.g. Create the same shadow in virtual environments as real-life shadow with the same light conditions

Light : #1 (left)

Light : #2 (left, right)

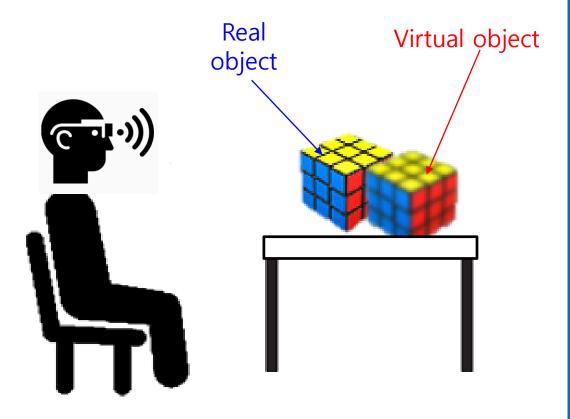
Stereo camera calibration for the video see-through HMD

wrvision Calibration Tool	+ 000000080-0-0-0-008	
Open Ovivision Start Calibrati	State : Glosed	
		Centera Monitor :
0.		Output:
1. Contract (1. Contract)		

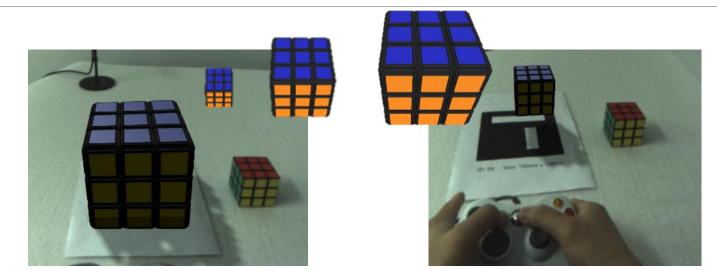

https://www.youtube.com/watch?v=wSjqImFmxDY

Movie

이종 AR 디바이스간 인지 측정 실험 Video see-through HMD & Optical see-through HMD

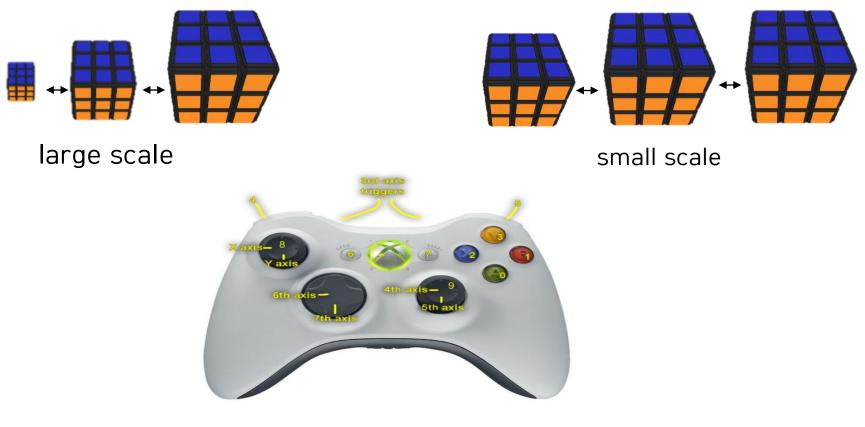

Experiment 1: Scale perception

- $\checkmark~$ Video see-through HMD VS. Optical see-through HMD
 - Independent variables: Display type
 - Dependent variables: User's scale perception
 - Participants: Total 60 people (Between-subjects, each 30 people)



Procedure

- Look at a real cube on a desk
- The subject is sitting on a chair in a fixed position and wears a MR HMD
- ✓ Compare the size with a virtual cube next to a real cube
 - for removing the user's mental load


Scale Adjustment

- ✓ Initial size of the virtual cube : 150mm x 150mm
- ✓ The size of the real cube : 55mm x 55mm
- ✓ Distance between the subject and the real cube (& the virtual cube)
 − 10cm, 40cm, 70cm (3 cases in our experiments)
- ✓ Scale adjustment using a joystick
- ✓ Until the subject controls the virtual cube equal to the size of the actual cube
 27

Joystick Interaction

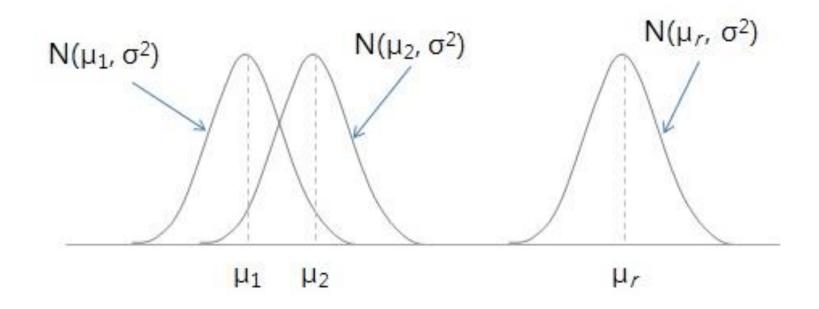
 \checkmark Try to fit the virtual cube to the same size as a real cube using a joystick

✓ Button 4/5: large scale control

✓ Button 6/7: small scale control

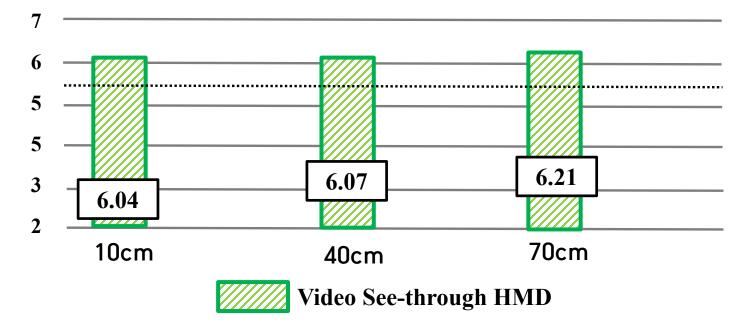
Results: Scale

Video see-through HMD


	10cm	40cm	70cm
피실험자 1	5.7cm	5.7cm	5.4cm
피실험자 2	5.4	5.4	4.4
피실험자 3	5.4	5.0	5.1
피실험자 4	4.9	5.3	4.8
피실험자 5	5.6	5.2	4.8
피실험자 6	5.4	5.7	5.4
피실험자 7	5.4	6.0	6.0
피실험자 8	6.6	6.0	6.5
피실험자 9	6.0	6.0	5.8
피실험자 10	30	people	6.2
피실험자 11	50	people	9.3
피실험자 12	5.9	7.4	6.5
피실험자 13	6.2	6.1	5.6
피실험자 14	7.0	6.4	6.2
피실험자 15	5.8	6.6	6.0
피실험자 16	6.4	6.5	6.4
피실험자 17	7.4	6.8	7.3
피실험자 18	6.2	6.2	5.9
피실험자 19	6.6	7.0	6.0
피실험자 20	5.9	6.3	6.1
피실험자 21	6.3	6.7	6.2
피실험자 22	7.2	7.3	5.9

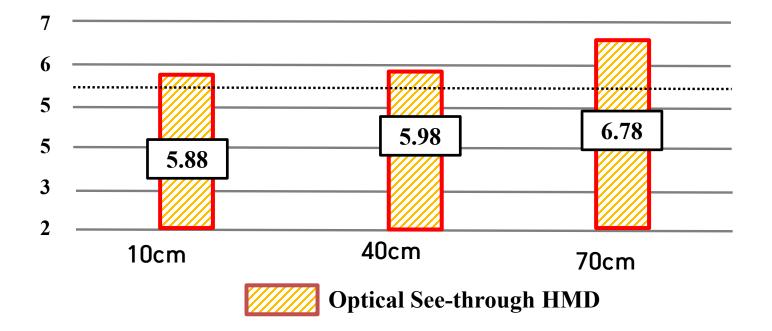
Results: Scale

Optical see-through HMD

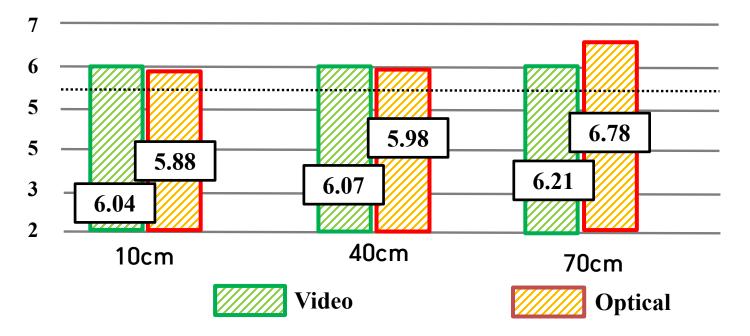

	10cm	40cm	70cm
피실험자 1	5.7cm	5.7cm	5.4cm
피실험자 2	5.4	5.4	4.4
피실험자 3	5.4	5.0	5.1
피실험자 4	4.9	5.3	4.8
피실험자 5	5.6	5.2	4.8
피실험자 6	5.4	5.7	5.4
피실험자 7	5.4	6.0	6.0
피실험자 8	6.6	6.0	6.5
피실험자 9	6.0	6.0	5.8
피실험자 10	30	people	6.2
피실험자 11		people	9.3
피실험자 12	5.9	7.4	6.5
피실험자 13	6.2	6.1	5.6
피실험자 14	7.0	6.4	6.2
피실험자 15	5.8	6.6	6.0
피실험자 16	6.4	6.5	6.4
피실험자 17	7.4	6.8	7.3
피실험자 18	6.2	6.2	5.9
피실험자 19	6.6	7.0	6.0
피실험자 20	5.9	6.3	6.1
피실험자 21	6.3	6.7	6.2
피실험자 22	7.2	7.3	5.9

One-way Anova

Results: Scale


Video : Difference by Distances

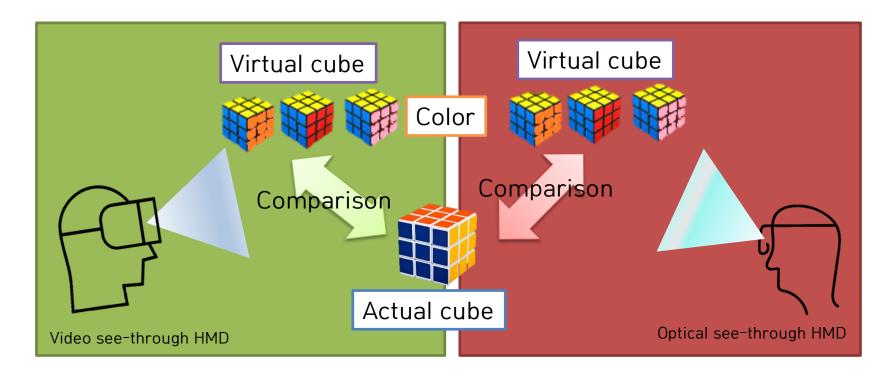
✓ No statistically significant difference by distances (p-value > 0.05)


Results: Scale

Optical : Difference by Distances

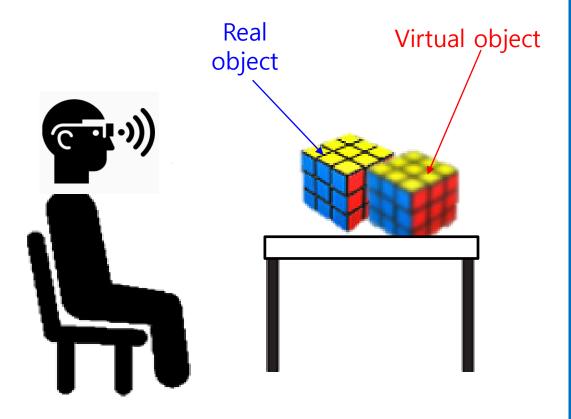
 \checkmark No statistically significant difference by distances (p-value > 0.05)

Result: Scale

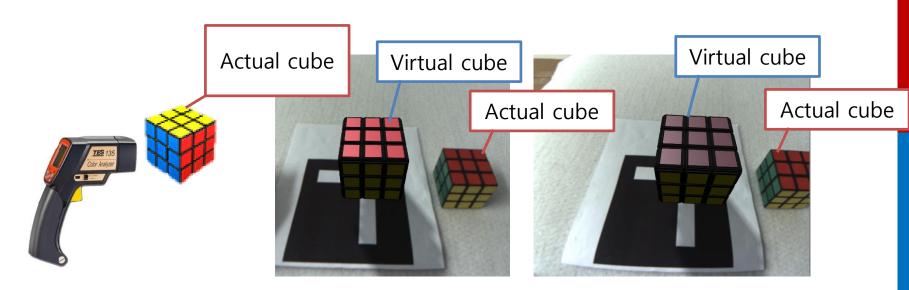


 \checkmark No statistically significant difference by distances and display types (p-value > 0.05)

- ✓ But, Optical/video see-through HMD : tend to look bigger than the real cube
 - Under-estimate
 - e.g. In case of the video see-through HMD, people feel that the size 6.04 is equal to 5.5 cm.
 - Scale gain : video 1.11, optical 1.13


Experiment 2: Color perception

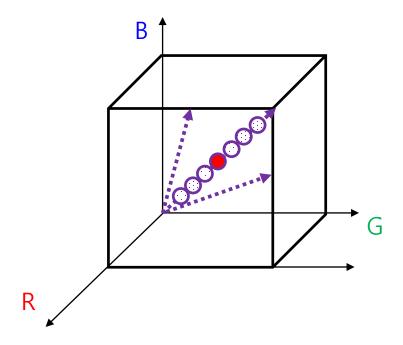
- ✓ Video see-through HMD VS. Optical see-through HMD
 - Independent variables: Display type
 - Dependent variables: User's color perception
 - Participants: Total 60 people (Between-subjects, each 30 people)



Same Procedure

- \checkmark Look at a real cube on a desk
- The subject is sitting on a chair in a fixed position and wears a MR HMD
- ✓ Compare the size with a virtual cube next to a real cube
 - for removing the user's mental load

Color Values


- ✓ Using a color meter, we estimated RGB colors in the real cube
- ✓ To create virtual cubes, each RGB is set to 7 levels.
 - Total 21 (R 7 + G 7 + B 7)
 - Adjusted material color values

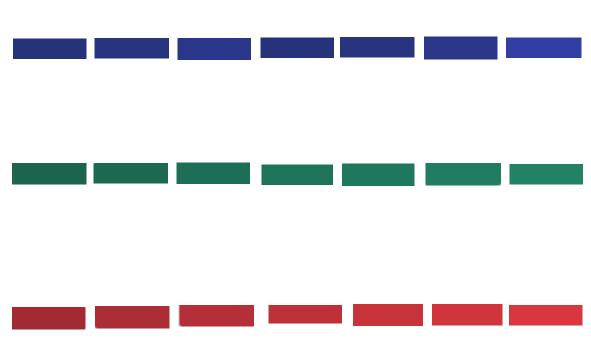
Color Values

	Actual cube		
	R attribute	G attribute	B attribute
R section	189	30	44
G section	49	115	56
B section	57	90	142

- \checkmark Average RGB values in the real cube
- ✓ Measured 5 times, Omit decimal point

Color values for experimental setting

The formula for 3D distance is: Sqrt(dr²+dg²+db²)


Where dr, dg and db are the difference on the r, g and b axis.

✓ Create 7 virtual cubes with different colors
 − R/G/B 3 color : total 21 setting

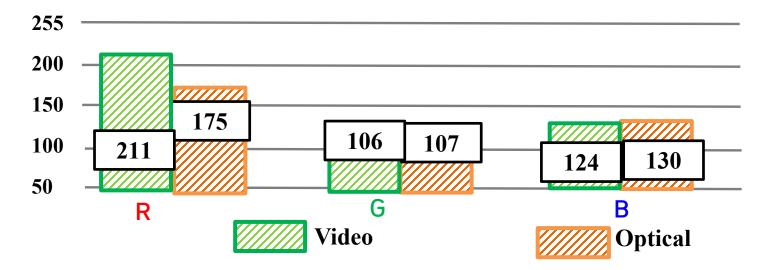
 Try to select the virtual cube to the same color as a real cube using a wireless keyborad

Color mapping table

		R 38 G 30 B 121	1 B2 40 52 128 (4 2	В 3 42. 54 135 G7	BF 44 56 142 64	46 58 149 65	B6 48 60 156	BN 50 62 163 41	THE A
	F	2 21	28	29	30	31	32	37	
	G B	NB 100	105 82	86	90	94	a8	102	-
		RI	R2	R3	R4	R5		-11	_
f	2	162	Ini	(80	189	199	5 10 20	n 246	
6	Ē	\$7	45	41	49	5	1 5	rs 5t	5
₿		51	53	國訪	51	5	9 (51 6	5

Color 측정 실험 결과

Video see-through HMD

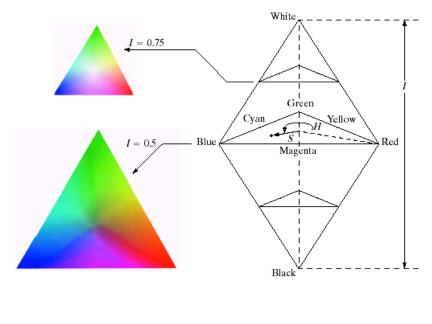

	R	G	В
피실험자 1	7	1	1
피실험자 2	5	2	2
피실험자 3	6	1	2
피실험자 4	6	1	1
피실험자 5	6	2	1
피실험자 6	6	2	1
피실험자 7	7	3	1
피실험자 8	6	1	1
피실험자 9	7	2	1
피실험자 10	30	people	1
피실험자 11		people	2
피실험자 12	7	2	2
피실험자 13	6	1	2
피실험자 14	7	1	1
피실험자 15	6	5	1
피실험자 16	6	1	1
피실험자 17	7	2	1
피실험자 18	7	2	3
피실험자 19	7	6	2
피실험자 20	6	2	1
피실험자 21	5	2	1
피실험자 22	7	6	3

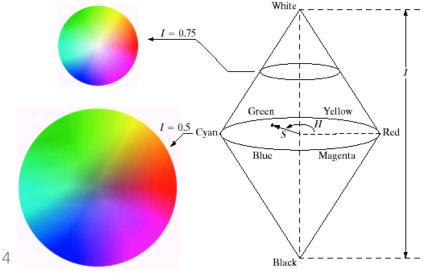
Color 측정 실험 결과

Optical see-through HMD

	R	G	В
피실험자 1	7	1	1
피실험자 2	5	2	2
피실험자 3	6	1	2
피실험자 4	6	1	1
피실험자 5	6	2	1
피실험자 6	6	2	1
피실험자 7	7	3	1
피실험자 8	6	1	1
피실험자 9	7	2	1
피실험자 10	30	people	1
피실험자 11		people	2
피실험자 12	7	2	2
피실험자 13	6	1	2
피실험자 14	7	1	1
피실험자 15	6	5	1
피실험자 16	6	1	1
피실험자 17	7	2	1
피실험자 18	7	2	3
피실험자 19	7	6	2
피실험자 20	6	2	1
피실험자 21	5	2	1
피실험자 22	7	6	3

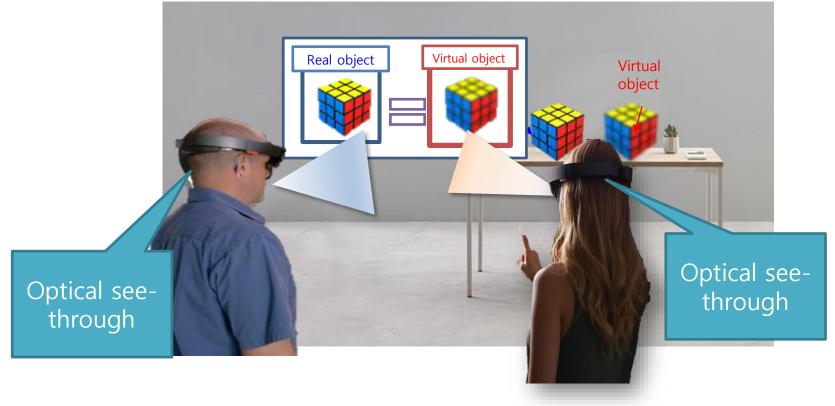
Results : Color




- Red color only had statistically significant difference by display types (p-value < 0.05)
 - Initial Red color :189 → result : 211(Video), 175(Optical)
- ✓ In case of the optical see-through HMD, people feel that red 189 is equal to 175.
 → color under-estimation

Future works

Color values for experimental setting


- HSI
 - Hue, saturation, intensity
 - Correspondence to the way humans describe and interpret color
- Optical see-throughLower intensity
- Video see-through
 - Higher intensity

AdaptAR

 Participants perceptions of virtual object according to same mixed reality devices (e.g. color or scale)

 \checkmark e.g Disparity depending on each person

Acknowledgement

 This research is supported by Ministry of Culture, Sports, and Tourism (MCST) and Korea Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2018 (본 연구는 문화체육관광부 및 한국콘텐츠진흥원의 2018년도 문화기술연구개발 지원 사업으로 수행되었음)