

# THE CURTIS PLATFORM FOR CITY SIMULATION

marc-f.petit@edf.fr

August 2015

## THE NEED FOR A CITY SIMULATION PLATFORM

- City development requires planification.
  - Energy management
  - Transport management
  - . . .
- Large utilities such as EDF can provide expertise based on their experience.
  - Consulting
  - Services
- In this context, EDF is building an urban simulation platform.
  - Simulation codes implemented from models specified by domain experts
  - Data management (input, scenarios, simulation results)
  - A GUI is needed for this platform



## A WEB BASED SOLUTION

## End users need to access the platform ...

- ... wherever they are ...
- with specific IT rules about installs, OS, etc.

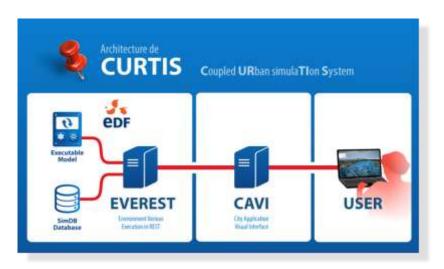
### Some control need to be kept.

- By EDF, about its simulation codes and domain expertise.
- By the clients, about their data.

#### The web is the best environment.

- No need for specific installs
- It can be accessed from mostly anywhere.
- Data is centralized and secured.
- All kinds of user interface widgets (text, 2D, 3D).
- The base of most modern Information Systems (SOA, REST)



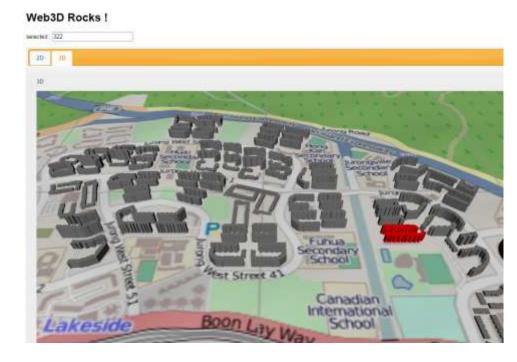

# **ARCHITECTURE**

## **EVEREST**: A simulation platform

- Provides data, simulations and results management capabilities.
- Geographic Information System services are now available too.
- All services are exposed as REST.

## User interface(s)

- WebGL based
- Include their own presentation-oriented storage
- 3D data exchange is based on CityGML.






# WEB3DROCKS

- A proof of concept for testing
  - □ Dev < 2 weeks
    - Mostly data transform and services connection
  - X3D based
  - Connection to web services, visualisation of a 3D neighbourhood ...

```
<ht.ml>
<body>
    <div>...</div>
    <div>
         <x3d ...>
             <scene>
                  <inline ... url=.../>
             </scene>
         </x3d>
    </div>
</body>
</html>
```





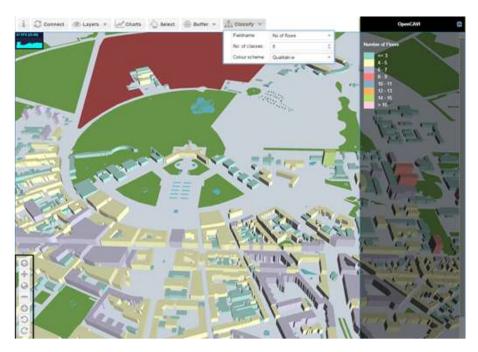
# **CAVI**

## A full prototype of a useful user interface

- Developped by a contracting company
  - Based on a fork of Three.js
- Actually field tested
  - Services in France, users in Singapour

## Not a full product

- Focus more on usage than on non-functional requirements (qualities)
- CAVI2 development in order to go from a prototype to an industrial product








# **OPENCAVI**

- Internally developped user interface
  - Developped in parallel with CAVI 2
  - Experimentation UI
    - New EVEREST functions
    - New interfaces (input or output devices)
  - Building blocks for other solutions
    - For test of other 3D engines for example
  - Maintain skills





# CONSIDERED IMPROVEMENTS

- The reason why SIGGRAPH is important to us!
- Seamless integration of new input/output devices
  - 6 DoF mouses, VR headsets ... technically integrated with the platform (web!)
  - User experience consistent with use cases

## **Immersive city**

- Cars, people ... simulated in real-time (possibly based on a « true » simulation)
- Automated geotypical data (trees, textures ...)
- Realistic illumination (urban lighting)

#### Robust architecture

- Consistent 3D (data and GUI) requirement patterns
- Requirements based data translation



## CONCLUSION

- Web based development of actual 3D applications is possible and can be done quickly.
  - Different UIs can be developed for different needs.
  - Depending on the usage, data size doesn't have to be a constraint.
    - Despite evolutions, the network still is a critical resource.
- Architecture is as important as technology
  - Reduce coupling : use standards!
  - Separate concerns: interchange and presentation formats may differ.
    - Using only one reduces the need for skills and the risks linked to translations.
- Data translation (between formats) is still complex.
  - Loss of structure or information.
  - Incompatible requirements

