Activities at SC 24 WG 9: An Overview

GERARD J. KIM, CONVENER
ISO JTC 1 SC 24 WG9

Mixed and Augmented Reality (MAR)

Mixed Reality Continuum

Physical Reality

Augmented Reality

(Physical > Virtual):
"adds" computer-generated
information to the real world
(Azuma et al. 2001)

Augmented Virtuality

(Physical < Virtual):
"adds" real information to
a computer-generated
environment
(Regenbrecht et al 2004)

Virtual Reality

ISO SC 24 and MAR

- ISO-IEC JTC 1 SC 24
 - Have developed standards for computer graphics and virtual environments such as X3D
 - MAR implementation is much based on VR
 - Natural for MAR standards to grow out of that of VR
 - ➤ Formation of WG 9 in 2011 (devoted to MAR)

Current Work Items and Their Status

ISO/IEC DIS 18039 (Joint work with SC 29 WG 11 – JAhG)	MAR reference model	40.60	2018-08-22
ISO/IEC CD 18040	Live actor and entity representation in MAR	30.60	2019-01-25
ISO/IEC AWI 18038	Sensor representation in MAR	20.00	2019-01-25
ISO/IEC CD 18520	Benchmarking of vison-based geometric registration and tracking methods for MAR	30.60	2017-12-10
ISO/IEC AWI 21858	Information model for MAR contents	20.00	2018-08-08

MAR Reference Model (18039)

- Abstract framework or domain-specific ontology consisting of an interlinked set of clearly defined concepts produced by an expert or body of experts in order to encourage clear communication (Wikipedia)
 - Can represent the component parts of any consistent idea, from business functions to system components, as long as it represents a complete set
 - Defines an authoritative basis for:
 (at a proper abstraction level w.r.t. some given purpose = standardization)
 - Terms and their precise definitions
 - Generic system model of mixed/augmented reality system
 - Major components and their functionalities
 - Inter-component interfaces (data and control)
 - Use cases, system classes and existing solutions
 - × Others ...

Purpose: A Model Architecture

- Help develop/extend consistent and comprehensive MAR standards
- Help MAR system designers and information architects and service developers
- Promote fluid communication among MAR practitioners in the field
- Identify and derive strategic areas for standardization
 - MAR sensors (and mirrored world)
 - MAR real character (and augmented virtuality)
 - MAR contents information model (and application file format)
 - MAR API
 - MAR and IoT

O ...

Current Content

DIS approved
June 2017

- Scope
- Motivation
- Terms and Definitions / Symbols
- MAR Domain and Concepts
- MAR RM Usage Example
- Reference System Architecture
 - Viewpoints
 - Enterprise
 - Computational
 - Informational
- MAR Classification Framework
- MAR System Classes

- Conformance
- Performance
- Safety
- Security
- Privacy
- Annex (Informative)
 - A: Patent Statements
 - B: Use Cases and Coverage by MAR RM
 - C: Existent AR Solutions (Research)
 - O: Existent AR Solutions (Commercial)

Future Updates?

*

- DIS review comments (mostly editorial) and formatting
- Additional technical content (2nd DIS?)
 - System components
 - Multimodal synchronization (MAR Simulator)
 - Script engine (MAR Simulator)
 - External information input
 - Content (MAR Scene, G. J. Kim)
 - Display description (HMD, Mobile, ...)
 - Multimodal properties
 - ▼ Target object (feature) description (e.g. Marker, Image patch)
- Coverage
 - System classes / Classification scheme / Use cases (SLAM, Spatial AR, Glasses, ...)
 - New technologies SLAM, Deep Learning

Future Updates?

*

- Beefing up for details
 - System components
 - Renderer, Display, UI, Sensors (M. Lee), Real world capture
 - Others
 - **Benchmarking (T. Kurata)**, Safety, Privacy, Human Factors, ...
- Model refinements
 - Augmented virtuality / Real (video) characters (K. Yoo)
 - Location based AR
 - Optical see through AR
 - Tele-presence collaborative AR

Live actor and entity representation for MAR (18040)

• Standard constructs for representing captured/reconstructed live beings (human, animal, etc.) and importing them seamlessly into the MAR world

Typical AVR

Live actor and entity representation for MAR (18040)

- Reference information model for representing of:
 - Sensing of real actor and entity in a real world from input devices (e.g. depth camera)
 - Sensing of information for interaction from input sensors.
 - Recognizing and tracking of live actor and entity in a real world (and their interaction)
 - Spatial control of live actor and entity into a 3D virtual world
 - Event interface between live actor/entity and a 3D virtual world
 - Composite Rendering of live actor/entity into a 3D virtual world

Sensor representation for MAR (18038)

- Standard constructs for representing sensors in real and virtual world and how to associate them as conduits between mirrored and correspondent VR/MAR words
 - General MAR contents, IoT and VR/MAR, Mirrored worlds

- CD text now ready for submission
 - Concepts have been updated and clauses revised according to comments given in the previous meetings
 - Will seek consensus in this meeting

Sensor representation for MAR (18038)

Benchmarking of vison-based geometric registration and tracking methods for MAR (18520)

- ISO/IEC 18520 "Benchmarking of Vision-based Geometric Registration and Tracking Methods for MAR" identifies the reference framework for the benchmarking of vision-based spatial registration and tracking (vSRT) methods for MAR.
- The framework provides typical benchmarking processes, benchmark indicators, and trial set elements that are necessary to successfully identify, define, design, select, and apply benchmarking of vSRT methods for MAR.
- It also provides definitions for terms on benchmarking of vSRT methods for MAR
- The next stage for ISO/IEC 18520 is "DIS registered (40.00)." The target date is in September 2017 and the due date is on December 10, 2017.

Benchmarking of vison-based geometric registration and ** tracking methods for MAR (18520)

- Standard process and metrics for evaluating system performances (e.g. tracking) for MAR systems
 - Tracking accuracy: One of the most important performance indicators for MAR
 - Associated with the TrakMark work from Japanese NB
- Process: Vision-based geometric registration
- Data set: Image sequence
 - Ground truth of camera intrinsic/extrinsic parameters
 - Ground truth of image feature correspondences
- Criteria for performance evaluation
 - (Re)Projection error of virtual objects (points) / Position and posture errors
 - Latency and frame rate (Frequency, Computational cost (time))

Benchmarking of vison-based geometric registration and tracking methods for MAR (18520)

Virtual plane

(z = a)

B

C

B

C

Ground truth) $y = \frac{a \cdot d_x \cdot w}{4S_x \cdot f}$ $y = \frac{a \cdot d_y \cdot h}{4f}$ Virtual plane (front view)

Image plane

(Estimated camera parameters)

Sample image sequence with features to track

Re-projecting tracked features

Information model for MAR contents (21858)

- Extending virtual environment (content) representation for mixed reality
- First major and important application level standard to be pursued after the MAR reference model

Information model for MAR contents (21858)

- New components/attributes for MAR
 - MAR Scene
 - Real world objects/scenes
 - Virtual/Augmentation scenes/objects
 - MAR event and behaviors
 - Sensors, Tracker, Recognizer
 - Real world capture
 - Other support
 - Multimodality and synchronization
 - Remote access
 - Ver und ver
 - Display specification / adaptation

```
Hello
<scene id = 'scene 1' />
 <viewpoint id='arview'>
 <transform DEF = 'root' ... >
</scene>
<sensor id = 'camera 1' ... >
<background camera = 'camera 1' scale = '1' ... >
<robject id = 'm1' type = marker file = 'hiro.dat'</pre>
         parent = 'root' translation = ... rotation = ... >
<h1 id = 'aug1' parent='ph1'>
 "Hello World"
</h1>
<MAR Event id = 'e1'
              type 'object presence'
              marker = 'm1'
              value = ... translation = ... rotation = ... >
<MARbehavior id = 'b1'
              type = 'show'
              event = 'e1.value'
              object = 'aug1'
              where = 'e1.translation' ... >
```

Future Work Items

- IoT and MAR
- Webizing MAR contents (with W3C)
- Telepresence support
- Ergonomics for MAR
- MAR visualization and environment dynamics
- Representing multimodal properties (WG 6)
- Image based rendering support for VR (WG 6)

Coordination with other SDO's

- X3D / Web3D (SC24)
 - Already has a rich and mature 2D/3D representation scheme and file format
 - Can be used as scene representation for AR (which is really VR space)
 - o Can be used for 2D/3D object representation and their behaviors (X3DOM, Behavior nodes, etc.)
 - Working closely with Web3D AR WG
- W3C / HTML 5
 - O POI Working Group ?
 - WebGL / Declarative 3D
 - Trend: Web is "housing" everything
 - × Video, Audio, 3D Virtual, Documents, Interactivity, ...
 - Web browser vs. MPEG browser vs. X3D browser

Conclusion

- Reference model fulfilling its role as the basis and starting point for standardization
- AR/MR is exploding
 - Much more expert participation is needed
 - Need to address the widening needs of the industry
 - Much more active publicizing our efforts and results is needed
- Application standards need to be derived for immediate industrial impact
- VR and MR/AR is merging!
 - E.g. Glasses that can switch between VR and MR modes